i S - R e L T

-
*

<::> STANFORD ARTIFICIAL INTELLIGENCE PROJECT APRIL, 1970
MEMO AIM-11h4

ON THE SYNTHESIS OF FINITE-STATE ACCEPTORS

by

AD70808

A. W. Biermann and J. A. Feldman
Computer Science Department
Stanford University

ABSTRACT: Two algorithms are presented for solving the following
problem: Given a finite-set S of strings of symbols,
find a finite~state machine which will accept the strings
of S and possibly some additional strings which
"resemble" those of S . The approach used is to
directly construct the states and transitions of the
acceptor machine from the string information. The
algorithms include a parameter which enable one to
increase the exactness of the resulting machine's
behavior as much as desired by in~reasing the number of
staetes in the machine. The properties of the algorithms
are presented and illustrated with a number of examples.

The paper gives a method for identifying a finite-state
language from a randomly chosen finite subset cf the
langusge if the subset is large enough and if a bound

is known on the number of states required to recognize
the language. Finally, we discuss some cof the uses of the
algoritims and their relationship to the problem of
grarmatical inference.

The research reported here was supported in part by the Advenced Research
Projects Agency of the Office of the Secretary of Defense (SD-183).

Reproduced in the USA. Available from the Clearinghouse for Federal
Scientific and Technical Information, Springfield. Virosinig 22151.
Price: Full size copy $3.00; microfiche copy $§ O.b3 C

for Federal Sciantiic & Technical

Reproduced by the .
CLEARINGHOUSE Pﬂ '»"" . "‘! 7\ '\-\FF
i {
}

Infermation Springliald Va 22151 e ® \.——-“ Y "m’ ved) it q ‘gm %
N “1,. and sclos 3D \i\
. X
p\“‘ oo 1 \]S(Od«
\ Sistibution 18 % U LL.)L.JL_UU i 3‘4 o

Eﬂu— " et mw@ﬂgﬁg, -

e GRCP by IRt 2

1.

2.

I I e S

Table of Contents

Introduction . « ¢« ¢« ¢« 4« ¢ o 0 o 0 .
A Finite-State Acceptor
Further Properties of A(S,k)
Applications . + > « « ¢« ¢ s o o ¢ o
Another Finite-State Acceptor
Discussion and Summary . « + + ¢« o o
Appendix . o o o 4 o 0 s o 6 6 0 s e s

Bibliogl‘aphy s 8 & & & & o » s o & ° o

O e

O

19
22
25
26

Ty

e AT NS

PRI

ON THE SYNTHESIS OF FINITE-STATE ACCEPICRS

by
A. W. Biermann and J. A. Feldman

1. Introduction
An eacceptor iz a finite-state machine which receives strings of i
symbols as input and which responds to each string with an answer of

either "yes" or "no"; that is, it accepts or rejects each string. This

iR

paper discusses the problem of constructing an acceptor for a particular
finite set S of strings and perhaps some edditional strings which
"resemble" those in S . We present two algorithms for constructing

such a machine from S and from additional information about the

required preciseness of the machine's behavior. The algoritmms
presented enablie one to obtain varying degrees of accuracy with
corresponding varying degrees of machine complexity. Thus, if the
acceptor is required to accept only the strings of S and no ovhers,

it can be expected to require many more states thaun if a large number of
"extra" strings ere allowed Lo be in the accepted set.

There are a number of finite-state machine synthesis algorithms in
the literature. Huffman [9], Mealy [10], and cthers have developed
algorithms for sequential machine design when some kind of transition
table or state diagram is given. Ott and Feinstein [11], Brzozowski [1],

and others heve given methods for constructing acceptors from their

PR

-
-~ ———n - .. B i L L PPt SR

regular expressions. This paper is concerned with the problem of
designing a finite-state acceptor when no simple transition table,
state diagram, or regular expression is availsble.

Ginsburg [5, 6] gives an algorithm for synthesizing sequential
machines from input-output behavior, a problem similar to the one
dealt with here. However, our algorithms are concerned with the desisor.
of a different type of device, an acceptor, and the methods presented
are distinctly different from those of [5, 6].

The techniques which are described here grew out of an idea by
Feldman [2] who was attempting to infer finite-state grammars for sets
of strings. Feldman's idea suggested a method of creating states and
transitions from string information, and this concept became the core
of the algorithms which were subsequently develuped.

In this paper we will show how to construct a machine A(S,k)
which is an acceptor of set S (Section 2). Other properties of
A(S,k) will be investigated with examples given (Section 3), and its
applications will be discussed (Section 4). Finally, a second algorithm

and ite prcperties will be investigated (Section 5).

2. A PFinite-State Acceptor

We introduce a number of definitions largesly following the notation

of Ginsburg [6].

Definition 2.1. A nondeterministic automaton A 1is a five-tuple

<Q,Z,f,Q0,F> where

MNNSR0S vt

Py g - ""‘%?“‘,ﬁ‘;‘

R T e

2

Q 1s a finite nonempty set (of states)

L 1is a finite nonempty set (of input symbols)

f is amapping Q x Z - 2Q (the transition function)
Q, is a subset of Qq (thz set of initial states)

F 1is a subset of Q (the set of final states) .

¥*
The function f is extended to & mapping Q x & - 2Q‘ by the

recursive definition

£(qyA) = {a}

where A 1is the string of lengch zero and qe¢Q , and

flq,wa) = U £(q*,a)
Q'ef(q,w)

+*
where weX and aci .

Definition 2.2. The language L(A) of the nondeterministic

automaton A will be defined to be the set nf strings w = ce o8

8,8,
aiez for 1 <1< J, such that there is a sequence of states

j 2

9,09y ""q,j with the properties
(1) a8,
(2) q, € f(qi_l,ai) for 1<1i<

(5) QJeF .

We will be interested in the relation of the languages of various
automata to a fixed set £ of strings. If Sc L(A) , then A will

he said to accept S . If S = L(A) , then A will be said to accept

exactly S .

N

- emomempn 3 @

PR

e e

After a preliminary definition, we will show how to construct a

class of sutomata which will be shown to accept S .

*
Definition 2.3. The k-tail of 2z with respect to ScZ will

»*
be denoted as g{z,S,k) and will be defined as follows: Let zel
»*
be such that zweS for some wecL , and let k be & nonnegative
*
integer. Then g(z,S,k) 1is defined as the set of strings weL

with the properties
(a) zwes

(b) 1length(w) <k .

™

g(zyS,k) 1is undefined if z and k are outside of the domains
specified.
The acceptor of set S will be determined from the set § and

from the look-aliead level k and will be denoted A(S,k) .

¥*
iNefinition 2.L., If S 1is a finite set of strings from I , let

A(S,k) be the nondeterministic automaton

A':S? 1’-) = Gy L, f:Qo: F>

vhere
¥*

¥*
{q<2£ | 2(z,8,k) = q for some zeZ)

<
n

™
i

& finite nonempty set of inyut symbols

¥
£f(q,8) = {q'cq | there is a zcZ such that g(z,8,k) =

1
o

and g(za,5,k) = q'}

Qo = {S(A: S, k) }

F = {geQ]Acq) .

The machine A(S,k) thus has as states the set of all k-tails

which can be constructed from S . A transition from k-tail S, to

1l

k-tail 52 under input symbol b will occur if there is a string =z
with k-tail Sl and 2zb has k-tail 32 .
The set S will be said to yield the language L(A(S,k))

(at look~ashead level k) .

Example 2.1. Suppose as an illustration of Definition 2.4 that
we consider the example where S = {a,ab,2bb} and k = 1 . Then

A(S,k) = Q,Z,f,QO,D where

Q = {{a},{A,0},{A}}

% = {a,b]

£ = ({a},a) = {{a,0}}

£ = ({a,0},0) = {{a},{a,0}}
Q, = {{a}}

F = {{n},{A,b}}

o,
key

initial state: >G
Tinal state: @

FIGURE 1 Example 2.1

T RN R T

N s mm———

2) et L 1

Note that the resulting machine which is diagramed in Figure 1 recognizes §

the set ab . A(S,k) is typically not in minimal form as is ithe case

here, but minimization can always beAdone by well known algorithme
(4, 5, 6, 8]. If k had been set at 2 or larger, we would obtain

L(A(S,k)) =S .

Theorem 2.1. S C L(A(S,k)) for all nonnegative k .

Proof. If w = 8,8,85. . .8, €S, a;cl then let g = g(A,S,k)
and q, = g(alae...ai,s,k) for i =1,2,3,...,3 . The sequence of
states qo,ql,qe,...,q‘j satisfy the three properties of Definition 2.2

fo we have weL(A(S,k)) . This completes the proof.

The construction of Definition 2.4 has provided states to
account for all possible k-continuations of heads of strings in S
so A(S,k) will surely be able to accept S . The next section
is concerned with stronger requirements on A(S,k) and the

consequences of varying the luok-ahead lcvel k .

3. Further Proverties of A(S,k) ko,
m

The machine A(S,k) will have no more than 210 states if s

is from an alphabet £ of m distinct symbols so that the upper bound
on a machine's size can be adjusted by setting the value of k . Thus
we can expect A(S,k) to increase greatly in "computing power" as k

is made larger. For example, if L(A(S,k)) is considered to be an

PERRC NG 2PV ¥ L R

ETINVETIR A dra)

-

B —

. A2 Rk bkt & 14
\xim?v! Ezﬁl

i

E é

£ i

L g approximation to S , we cen expect the approxisation to be =much boiter
if k 1is larger and, in fact, S = L(A{S,k)) if % iz a2s large as the %
length of the longest string in S &s will be ::owmn below. Fro=

L another point of view, we can corgider L({A{S,k)) to be a guess of tke g

1 language L, from wiich the sample S has been chosen. If k is

1 very small, the "guess” of LO will constitute a very liberal inference

and may include most of the strings from the alphabet of S . If k E
is as large as the longest string in S , however, the inference will
be very nonservative and will, in fact, include only the strings of S .
All of this will be made precise in the pa:agraphs that follow.

The first property to confirm is that L(A(S,k)) =S if k is
large enough, and the precof will make use of the following obvious

Lemma.

%*
Lenma 3.1. Let h(z,S) = fweZ | zweS} . Then if X is greater

than or equal to the length of the longest string in S, g(2,5,k) = h(z,S)

*
for all zeL such that g(z,S,k) is defined.

Theorem 3.1. L(A(S,k)) =8 if k is greater than or equal to

the length of the longest string in S .

Proof. Employing the Lemma and the definition of A(S,k) , we

¥
have A(S,k) = @ = {qe2®

lq = h(Z,S)},E,f,Qo = {h(A,S)},F= {qulAeh(z,S)}>
where f(q,a) = {q'eq | there is 2¢Z° such that qa =h(z,S) and 4' =h(za,S)]}

or f(h(z,8),a) = {n(ze,8)} 4if 1(za,S) is not empty. It follows that

N SR

£(5(z,S),w) = [a{zw,5)} for all wef if B(zw,5) is not e=pty. Then
r(n{z,8),w} = fr{w,S)7 . But L(A,S) 1is the initial state sc v will

te accepted by A(S,k) if and only if k{x,S}) is a firal state. That
is true if and only if A<k(w,S) which holds if an2 only if weS .
We coiclude that wel/A!S,k)) 1if and only if we<S which completes

the proof.

The lower tound giver on k is in general the best bound which
can te obtained ac lan te seen by applying the construction of Definition
2.k to the set § = {2,8,8°,...,8°) . It may also be wortk mentioning
that the machine of Tneorex 3.1 wili be deterministic and in its minimal
form.

We will next investigate the langueszes L(A(S,k)) as k is
varied and note their relstionship to each cther. It turns out that
L(A(S,k)) ‘"covers" L{L{S,k+i)) in the semse of Reymolds {[12] for
nonnegative i . In fact, the rext theorem could be derived from

Reynold*s results.
Theorem 3.2. L{A{S,k+1)) c L(A(S,k)) .

Proof. Assume Ww ...a, ¢ L(A(S,k+1)) , aie}i for 1<1<j.
J

= 88,

Then there is a sequence of ciates SNLIPRREILY in A(S,k+1) with
the properties

(1) fa) = q

(2) cf(qi,a

%41 1+1)

and

A ot TR e S AR

é

BT Y B R (AT A PR PR A

\ N RO T o et PN iy e o VS T 2
. s e o U Ay T T TR
N sa s ol b Y \%{1 g‘%’.d' ¥ A

P e AN o (AR AR M

o w ey AEREn A - B A T

?i
E
g

(3) qjeF (i.e., Aeqj) .

X
Furthermore, there is a string 2z,¢X such that 2 wieS for some

i i

wie}:* where q, = g(zi,s,k+l) and g, = g(ziai+l,s,k+l) for each
i=0,1,2,...,3-1 . Next consider A(S,k) and the sequence of states
CEPTLPRR ,q5 where qj'_ =q - {all strings in q; Of length k+l} .
These states certainly exist in A(S,k) and have properties analogous
to (1), (2), and (3) above. To justify (2), for example si.ply employ
the z,'s defined above and observe that qi = g(zi,s,k) and

q:'l+l = g(zia,S,k) will occur so that CHRE f(qi’a‘ﬁl) for

0 <1i<J-1. Therefore weL(A(S,k)) and the proof is complete.

The lagt three theorems combine to give a good picture of how S
is related to L(A(S,k)) as k is varied, and Figure 2 illustrates
the situation. Each language L{A(S,k)) will include 5 and will be
included by L(A(S,k-1) . k is thus a parameter of the algorithm
which can be used to adjust L(A(S,k)) to be as close t. S a3 desired

at the cost of increasing the number of states in the acceptor.

e e - e — x

Skl

TL5"% o 3, e o

There exists some m < length of longest string in &

such that L(A(S,2)) =8 4if £ >m.

Figure 2.

L{A(s,1))

L(A(S,2))

)
%

/

The relationships between the languages

as

k is varied.

10

L(A(s,0))

L(A(S,k))

masin s 5

AERRSRLI e e 38T SR 3SR,

o JE A "‘*5%

R, D BN I .

Suppose that the set of strings S is chosen from some finite-state

language I’O » It is desired to kmow what relationship the language

L(A(S,k)) may have to L, and under what conditions one can expect,
for example, equality between the languages. Some information can be
obtained by turning the problem around and asking the following question:
If we are given finite-state language L. , how 4o we construct a finite

0

set S and how do we set k in order to obtain L(A(S,k)) = Ly ? The

answer is to consider the minimal deterministic automaton M which will
accept exactly L, and to construct § in such a way that A(S,k)

wilil be equivalent to M . If M has n states then we sat the
look-ahead level k +to equal n-2 since the states of M can be

characterized by their behavior n-2 steps into the future. This

analysis will now be formally carried out.

E Definition 3.1. A finite-state deterministic automaton M is a
1 five-tuple <P,I, d,po,D> where

P is & finite nonempty set (of states)

T is a finite nonempty set (of input symbols) y
£ d is & mapping Px L -+ P (the transition function)

pOeP (the initial state) ;

D is = subset of P (the set of final states).

The function d 41is extended to & mapping P x)3* - P as the

function f was above.

TR

SNSRI N

— N

Definition 3.2. The language L(M) of the deterministic

S
}3
3
4
]
3
z

autcmaton M will be defined as

L(M) = {we}:*l d(po,w)eD} .

Definition 3.3.

(1) A state P, in a machine M will be called f-reachable

if there is a string w of length £ or less such that d(po,w) =p; -

(2) The states of machine M will be called k-distinguishable

if for each pair of distinct states Py and p 3 in M there is a
string w with length (w) < k such that exactly one of the states
d(pi,w) or d(pj,w) isin D .

(3) Consider the set @ of machines M whose states are
all f-reachable and k-distinguishable. Then Z(f,k) will be defined 3
as follows:

Z{L,k) = {LOILO = L(M) and M} .

Definition 3.4. The symbol M will henceforth be used to

designate the minimal deterministic machine such that L(M) = L0

, where LO is the language we are considering at the moment.

; *
£ Definition 3.50 If wiGZ then wo ¢ {Wil i = 1, 2, sy j}

§ {Wowili':l,e,s,...,j} .

Fugminarrgd

Theorem 3.3. If L,eZ(L,k) then L, = L(A(S,k)) if § is

o3,

“;?&‘Eé s«ﬁ iﬁ BT G . T -: . "

constructed as follows:

. o e x
ﬁ\i@l&.“ﬁh{;‘ﬁ&%ﬁ Ry «b&w

12

B AT T -

(1) Choose strings 235255 +++52, Such that for every state p

in M (where L(M) = LO) there is & 2z, = u,v, such that d‘PO’ui) =p .

(2) 8= Y wu-e(w,Ly,ktlvo)

*
ueX such that
zizuv for same zi

where

o, =1 if g(ua,Lo,k) =@ and g(ua,Lo,k*l) #9 for aek

Gu = 0 otherwise.

@ designates the empty set.

Proof. An informal justificaiion will be included here, and &
more detailed proof will appear ir the Appeniix.

S 1is constructed so that each state p in M has e counterpart
in A(S,k) , namely the k-tail g(u,Lo,k) where d(po,u) =D .
Furthermore, each successor to p , specifically p' = d(p,a) (aek)
must have & counterpart g(ua,LO,k) in A(S,k) which is a successor
(under a) to g(u,Lo,k) . To guarantee that A(S,k) will contain
g(u,Lo,k) and all of its successors, the set u - g(u,Lo,k+l) is
included in S . The set of u's is defined so that every state p in
M will have a counterpart in A(S,k) along with correctly assigned
successors. (For the moment, we ignore the quantity cu .)

The fact that A(S,k) will accept L. is clear because its

0
construction hes insured its ability to simulate M . However, many

T s S, b 1s 4 . . Aot e e

>y W

F«m;r 2reay e wm—

S K g b —

other states and transitions may appear in A(S,k) 3o one might think

A(S,k) would accept strings which are not in L, - This will not

occur because the orly other states which will appear in A(S,k) will

have the form g(u,Lo,k-i) with 0 <1 <k . The transitions will be

such that A(S,k) will be in state g(u,Lo,k-i) only when A(S,k)

is also in state g(u,Ib,k) . (Remember that A(S,k) is nondeterministic.)
Therefore nc strings will be accepted by A(S,k) which are not also
accepted by M .

Tne tem %y arises in the case where one of the successors
g(ua,Lo,k} to a state g(u,Lo,k) is the empty set ¢ . Then A(S,k)
may not include the transition f(g(u,I.O,k) ,8) = g(ua,Lo,k) becauvse
g(ua,Lo,k) may not have been created as a successor to g(u,Lo,k) .
This problem is remedied by including u-° g(u,Lo,}':flwu) in S where

o, = 1 . The reader is referred to the appendix for & detailed proof

of the theorem.

Definition 3.6. A set Sc L, vhich is constructed as described

by Theorem 3.3 will be called special (for language Ly at level k).

Example 3.1. As an example, consider the automaton of Figure 3

which accepis 811 of the strings on a three letter alphabet whici. have

exactly one A .

1

w WJ«W@,JJJ

ey oeccuah o rnaac oy

e Tt RN R

A,B,C

Y >
Y >

Figure 3. Example 3.1.

Only one string z, = AA is necessary to satisfy (1) of Theorem 3.3.

Tletting u=A, uw' =A, u" =AA, and k =1, we obtain Y

[}

S=u-. g(u,Lo,kﬂ) Uuae g(u',LO,k+1) Uu"- g(u",Lo,kl-l) ,

{A,AB,AC,BA,CA} U {ABB,ABC,ACB,ACC} U { } . This results in the g;

machine A{S,1) which accepts exactly the desired language.

Theorem 3.3 is important because it indicates about how much
information must be obtained from Lo before it can be recognized by
1 the algorithm. For most problems, Theorem 5.5 will, with appropriately
chosen z 32 give the S with the smallest possible number of strings

such that S will yield LO . It is true that there are sets S

0

Eﬁ which yield 1. and which are not special, but they are generally
larger. A more precise characterization of the sets which yield LO

is possible, but it is too camplex to be included here.

It will also be noted but not proved that if S is special for L0
and Sc8'CLy, then L, - L(A(S,k)) < L(A(S*,k)) . The inclusion

of a special set in S' insures that states and transitions will appear

i 15

5
.

in L(A(S',k)) which will accept all of the strings in L, . The

SelIRE S L OE TS T S T PN

edditional strings in S' mey add states and transitions to L(A{S',k))

vwhich cause it to accept strings which are not in I‘b . Thus a

randamly chosen subset of Lo which contains & specisl set will yield

a language which contains LO .
Two useful corollaries follow from Theorem 3.7%.

Definition 3.7. §| g = (weS | length (w) <1} .

Corollary 3.1. If L eZ(f,k) then %, =L(A(Lo|i,k)) it

i > t+k+1+0 where ¢ =1 if the state g =i } is in A(Lol,z_l,k)

and ¢ = 0 otherwise.

Proof. Choose the strings 2,,2z,,...,z in (1) of Theorem 3.3
to be all the strings in Lo which have length i-k-1-0 . Then §

as defined in (2) will be exactly Ly, .
Corollary 3.2. 1If LO = L(M) where M is an n-state automaton,
then L, = L(A(Ly|;,n-2)) if 1 >2n-2+0 where 0 =1 if the state

a={1) isin A(Lo|i_l,n-2) and 0 =0 otherwise.

Proof. Note that t.e language fov any n-state automaton is in

Z(n-1,n-2) and employ the previous corollary.

16

SRR GERRA TG FUR wirmscrmns .-
T WMALEAS & ""*3%’3&3

R L T TN " R

&

The lower bound on i in Corollary 3.2 if o = O is the best
performance that could be noped for under any conditions. That is,
there exist distinct n-state languages which are identical for ali
strings of length 2n-3 or less so that no algorithm could be expected
to discover I‘O with cnly that much information. The two n-state

machines of Figure L provide an example.

— ~ -~ \
~ ~ N 7/ N\ \

\ .
2 5 !
a,b n-2 n-2 |
a,b b i
b a,b a’ ;
1 n-1 1 n-1 :
a’ a” a‘)b '
n n :
A ;

1 Ay

Figure L. L(Al)len-5 = L(Ag)len_3 but L(A)) # L(a,) .

Example 3.2. This section will be concluded with an example which
illustrates the various results given above. All of the strings of length

five or less for a particular finite state language LO in 2(2,2) are

input to the algorithm while look-ahead level is varied. The set of
strings S satisfies the requirements of Theorem 3.3 so that L, = L(A(S,2)) .
The resulting machines are shown in Figure . The reader may check that

the various assertions made avove do indeed hcold.

17

e e e -

k A(S,k) L(A(S,k))

Mm AP

LDy AL LML 2 ot 30 st ¢

K =0 (A+B) B

[A(a+B) “B+B(A+B) (a+B) *B]"B

**
(ABAA"B+B(A+B)B*Ar*B) "B 3

((A+BA+BB)B" (AB+AAB))*p

(B+AABB+BAABB+BBABE+ABABB+AAABB)

Figure 5. Example 3.0, § = { B, AABB, BAABB, BBABB, ABABB, AAABB}

18

PRIV AW S v
LR S b

%
‘
D e L LA VR

~ e e e B S e g e e

4, Applications

The results of the previous sections are applicable to a variety
of problems in the synthesis of automata. The non-deterministic
automata created by these methods can, of course, be converted to
minimal deterministic automata by standard techniques [4, 5, 6, 8].
We will sketch briefly algorithms for some synthesis problems.

Suppose one is given two disjoint finite sets S1 and 52 and
asked to construct & machine which accepts Sl and not 82 . The

required machine is the one of minimum k wherc (¢S, implies
[~

y{L(A(Sl,k)) . This construction also solves the problem of
constructing a machine given both strings and non-strings of its
language.

If one is given a bound n on the number of states of a finite
state machine and all of the strings of its languege Ib are available,
the minimal machine for LO can be found. One uses k = n-2 and
S = LO|2n-l and computes A(S,k) as described above. By Corollary 3.2,
L(A(S,Xk)) = Ly ; the minimized version of A(S,k) is the minimal machine
for the language L. .

0
One can also solve the problem of finding the minimum machine for

distinguishing the disjoint infinite finite-state languages Ll and L2
when given bounds nl,n2 on the sizes of their respective machines.

The construction of the paragraph above gives minimal machines Ml’MQ
for Ll and L2 respectively. The smaller of these machines is an

upper bound on the size of the desired machine.

19

T e T e SRR S

The most important use of our algorithms occurs in the sequential

learning situation. Suppose one is given a new string yiel.o at time 1:1

and asked to select 2 machine Ai vhich describes the sequeace up to

time ¢, . This is the analog of the grammatical inference prodle= {2, 31

gl AR o M AR ANIOR

which was our original motivation and is a model of scientific reasoning
and other hypothesis forming behaviour. The interesting questions in
sequential learning are the neture of the machines A:l end the limiting
behaviour of an algorithm as i -« . We have developed elsewhere [3]

LR

Ly SR

a mumber of general results on this subject. These show that there is

an algorithm which will choose the best Ai at each i and will be such

that the successive A.i became ever better approximations to the machine

g
S

3y
oo

e

LA S

of Lb .

There are two important advantages of the methods of this paper

AR e
Lo uek

L3

3
i

over tne general algorithms described in [3]. The latter methods depend
on emumerating all finite-state machines in order, while the construction

of Section 2 requires one to consider only a small number of machines.

In addition, for fixed k , the machine A(Si,k) is easily constructed

from the machine A(Si_l,k) . This notion of sequential modification of

sy~ V.

a synthesized machine is extremely important and will be brie-ly described.

E2%
“

N , 3
M NS .
2 i PR T P R R 2

Suppose that A(Si—l’k) has been constructed and that A(Si,k) must

. - — <«

now be found; S, =8, , U {yi] . Let y; =ajs8s...8 asel .
(
Then only the k+1 (or fewer) states g{alaz’a},"’ar-k’si-l’k) ’
) "

g(ala2a3...ar_k+l,si_l,k, y ceey g(alae...ar,si_l,k) in A(si-l’k) are
affected by the addition of the string vy - Each of the sets

3 t LR 2R J
g(alazaB. ar-l&j’si-l’k) must have the string 8kt j+18r-ke jr2° " By

r ——— T S T

-~ - P) N LYWL 1 T3 K 0k 0 DOHABE RS BIER A bl Bg AT 0 dvrm e var o mirr - mrinemonsen s o AR KPR ST R+ 5 20 o - EEAN v -

addéd to it, and the transition function f must be correspondingly
changed. These alterations in A(Si-l’k) are enough to produce the |
new machine A(S;,k) . Considering the Example 2.1, if the string abba
is added to S , the new acceptor can be constructed by altering the
st~tes g(abb,S,1) and g(abba,S,1) . g(abb,S,1) = {A} becomes fA,a} ,
g(abba,S,1) which was not defined in the original construction becomes {A} ,
and A(S U {abba},l) now accepts exactly the set ab’ +ab be .

We have shown that the construction of Definition 2.4 will produce
machines A(Si,k) which have desirable properties. It remains to
describe an algoritlm for choosing k and deciding which A(Si,k) to
call the machine Ai . Suppose one is given an upper bound n on the
number of states required of M where L. = L(M) . Consider the

0
following algorithm:

7n‘2) . If

Algorithm 4.1. At each 1, campute B, = A(S.|,

i - _ - A
5, ¢ L(Bi) then A, =B, , otherwise A, = A(Si,n 2) .

Theorem 4.1l. Algorithm 4.1 has the following properties:

a) SiC_:_L(Ai) .

b) If S, contains a special set, I,C L(Ai) .

Ly = L(A;) -

e) If Lolen-lc sJ for some J then for all i >,

21

> mj
f
%
i
H
4

L

B e e

Proof. Fart a) follows directly from Theorem 2.1, part b) from

the discussion following Theorem 3.3, part ¢) from Corollary 3.2.

If one assumes, &8 seems reasonable, that every string in Ib
will occur as some ¥y 0 Algorithm 4.1 will eventually choose only a
machine which generates exactly Lb . This is Jnown in the literature
as the algorithm identifying Ib . There is a problem in that Algorithm 4.1
depended on an & priori estimate of n , the size of a nachine for Ib .
It is shown in [3] that without this estimate, no algorithm will be
able to identify the finite-state languages from an arbitrary presentation
of Lo . If, however, the presentation includes the informetion about
which strings ar¢ not in Ib or meets certain regularity conditions,
there are algorithms like 4.1 which will identify the finite-state
languages.

Although there is a close reletion between the problem discussed
here and the grammatical inference problem [2, 3], the criteria for
the best solution to the problem are quite different and this leads

to a number of other differences in the two studies.

5. Another Finite-State Acceptor

Another machine B(S,k) which accepts S at look-ahead level k
will be introduced here and discussed. The properties of B(S,k) are
not as easily characterized or as nice as those of A(S,k) , but it does
handle certain problems better than A(S,k) and so will be briefly

discussed hLere.

22

-
<t b A EED AR IORTN T2

€ A

e e BN I o T DL D mn e e . - N

*
Definition 5.1. Assume that zeX , 2zyeS for some yez* s

*
ScZ , and k is a nonnegative integer. m(z,S,k) will be defined
*
as the set of strings weX with the properties
(1) zwxeS for some XeZ - {r}

(2) 1length (w) =k .

Definition 5.2. e(z,8,k) = m(z,%,k) UJ g(2,S,k) - # where

fwl,wa, ...,wi} +y is defined to be {wly,wey, ...,wiy} .
e(z,8,k) 1is undefined if z and k are outside of the domains

specified in the definition of g(z,S,k) .

*
Definition 5.3. If S 1is a finite set of strings from I ,

let B(S,k) be the finite nondeterministic automaton

B(S:k) = <Q:z)f:Qo:F>

where

g4 o o¥ . .
Q = {qe2 U2~ | there is & 2z with zweS and q = e(z,5,k)}

L = a finite nonempty set of input symbols

f(q,a) = {q'eq | there is a z¢Z. such that :

e(z,S,k) =q and e(za,S,k) = Q'}

Qg = {e(r,8,k)]

F = {qeq | #eq} .

The proofs of the following theorems are nearly identical to their

respective counterparts of Sections 2 and 3 and will not be repeated here.

a3

T N e, WD«

.
ZIELED o N e R, Tt NE T e e PR sa. -

Theorem 5.1. S ¢ L(B(S;k)) for all nonnegative ¥ .

Theorem 5.2. L(B(S,k)) =8 if k is greeter than or equal
to the length of the longest string in S5 .

Theorem 5.3. L(B(S,k+1)) < L(B(S,k)) .

There is no immediate analogy to Theorem 3.3 for B(S,k) .
Since the states of B(S,k) contain more information than those

of A(S,k) , it is not surprising to find the following true:

Theorem 5.4. L(B(S,k)) ¢ L(A(S,k)) .

Proof. W = 88,0 .08y e L(B(8,k)) , aiez , implies the existence

of states STV PYRRRFL P in B(S,k) with the properties (1), (2),

and (3) of Definition 2.2, This implies the existence of states

qé,qi,qé,...,q3 in A(S,k) which also satisfy (1), (2), and (3).

Let q} = {wlw#eqi} for i=0,1,2,...,j . Therefore qi+lef(qi,ai+l)
*

in B(S,k) implies there is & 2zeZ such that e(z,S,k) = q; and

e(zai+l,s,k) = qy,, + From the definition of e , this implies that

g(z,8,k) and g(zai+l,s,k) exist as states in A(S,k) , and we have

Jjust named these states qi and q£+l » respectively. This leads to

q£+1_e11qi,ai+l) in A(S,k) which proves (2) of Definition 2.2 for

the states qé,qi,...,qé . (1) and (3) are easy to check and so it

follows that we L{A(S,k)} .

2h

stk

Ria PR S o 2 TR

3 ':‘&.‘:xxai;!mwl&;r [

oLy

S AT B

JES

A P IO AR % S own e OORDIATIIN P C Ay W s . —— - e

Thus B{S,k) accepts S and it accepts fewer "extra" strings
than A(S,k) . This effect is extreme in certain problems and may be
considered quite an advantage. However, it has not been shown that
there is any subset S of a language whick will yield the language
using B(S,k) as was shown for A(S,k) , so the earlier machine may

be preferred.

6. Discussion and Summary

This paper gives two algorithms for constructing acceptors from
finite sets of strings. Both algorithms have been programmed on a
canmputer and extensively tested. Typical constructions of machines
with ten or twenty states take a few seconds or less to camplete.

Many nther versions of these algorithms are possible, and some were
investigated although they are not described here.

The authors are not aware of a comparable solution to this problem
elsewhere in the literature. The algorithm has a simple c¢peration, and
is therefore easy to program and fast in execution. The parameter k
enables the user to obtain as exact a fit to the needed behavior as he
desires at the cost of increasing the complexity of the resulting acceptor. !
The simplicity of the algorithm makes its operation easy to understand

and easy to characterize. Finally, the system has the distinct advantage

that if a large amount of computational effort is invested in finding an

acceptor for a set of strings, changes can be made in its behavior without
the necessity of starting the design procedure over again. If A(S,k) is
created to accept S and then S 1is changed slightly, only the states and

transitions in A(S,k) which correspond to the changes in S need to be

adjusted to obtain a new acceptor.

a5

e e o

e R A

Ak ppn s

o, .
N e L e
- " e ek oy - B R e T e I o T -

a0

o

- A AN,

Appendix

A more detailed proof of Theorem 3.3 will be included here.

'

Definition Al. If p; is a state in M Witu the property that

*
d(pi,w)ﬁb for all wef , then P; will be called an absorbing state.

(Rl

¥ AW R A .
Wy SN L

Lemma Al. L(A(S,k)) = L, if and only if for each state p,eP
} of distinct sets x
i,

o

of M there is a set {xi,l’xi,E""’xi,,ji

of states geQ of A(S,k) such that
(1) d(po,w) =p;, if and only if f(qo,w) = ‘xi,l""’xi,ji} .
where wez* ; {a} = Q unless p; is an sbsorbing state.

d(po,w) = absorbing state if and only if f(qo,w) =9 .

t

(2) 1f p;€D then xi’JnF;é(p for § = 1,2,...5J, -

(3) 1f pi,én then xi,jﬂF=(p for § = 120058, -

Proof. Assume that the three conditions hold and observe why

it follows that L(A(S,k)) = Ly - Construct the deterministic automaton

N =<X,Z,e,X,E> which has the same behavior as A(8,k) . [6]

Xc2Q

e(x,a) = x' if x' = U f(q,8)
Qex

*o = %

E={x|]xnF;q]
26

B

..,
e g
.

2

- P A - SaraR? oL MY AR Vi — RS S R

The three conditions pe-tition the states of N into sets Yi of
states wnich are equivalent to p, in M . They require by (1) that K
be in a state of Y, if and only if M is in P, and by (2) and (3)
that N is in a final state ifandonly if M is inone. So M and X
are equivalent by conditions (i), (2), and (3), and N &snd A are
equivalent by construction. Therefore, L(A) = L(M) = Lo -

If L{A(S,k)) = L, , then N can be defined as above and the
sets Y, = {xeX | x is equivalent to p,cP} can be constructed. Certainly
d(po,w) =P if and only if e(xo,w) = x for one of the xeY,
must go into a state which is equivalert to p, . So property (1) holds.

since N

p;eD implies xeE which means x N F #® . So property (2) nolds and
property (3) holds similarly.

Proof of Theorem 3.3. We construct A(S,k) and show that it

satisfies the conditions of Lemma Al. Corresponding to state pi:P
of M we construct the sets xg 3 1<J< :ji s which each have the
3

state g(ul,Lo,k) where d(po,ul) =p; and v, =z is one of the

f A) §
strings designated in (1). (If p; is an absorbing state then construct

only the set x, .= { } .) Each of the sets x 123 <3y also

1,1 1,3’
will contain either none or some of the states g(ul,Lo,k-h) for
*
1 <h<k where a set x, P is constructed if there is a yeX such
s

that f(qo,y) =% 4 The set x will contain nothing else.
3

i,J
Certainly this construction can be done since by the construction of §
there must be & g(ul,Lc,k) ag defined for each pieP . Furthermore,

this construction partitions all of the sets of states in A(S, k) since

A IR TN o R LA

A i)

{ Y I N g, 3k s

- — e e &= et T - - R

no states can exist which are not of the form g(ul,Lo, k-h) for

9 <h <k . This can be checked by studying the construction of S .
It will be necessary to use the following property which can be

easily proved:

Prcperty A. If A(p,»y,) = d{p,¥,) + then
8(yprLy k) = 8(¥ps Liyok) -

Condition (1) of Lemma 3.2 will be proved by induction cn the

length of w .

I. 1If length (w) = 0 then d(po,w) =p, and f(qo,w) = {qo} =

fS(A:Lo,k)} € {xo,l’”"xo,jo} .

iI. Assume length{w) =h, length(wa) = h+l , and condition (1)
holds for length(w) =h . d(po,wa.) =p; if and only if there is

a Py sach that d(po,w) = Py and d(pj,a) =p; - This is true if and
induction hypothesis. It remains to be shown that the last stated
conditions hold if and only if f(qo,wa) € ‘xi,l’xi,‘?"”’xi,ji} .

That this is true can be seen by examining the states of
X € {xj l""’x,j j } and observing what happens as the input symbol a is
2 2
J

applied. First of all we know that g(u,LO,k) €x where d(po,u) = Py

8

whed 14T ow wae ., L A

Aot —

by the construction of x . Since the set 5, =u- g(u,Lo,lﬂl) is a
subset of § and S, =ua- g(ua,Ib,k) is a subset of S because
8, 8, , ve have g(ua,Lo,k) € f(g(u,Ib,k),a) by definition of f .
(One case which deserves special comment is when g(ua,Lo,k) =9 .
This is dealt with in the next paragraph-) But d(p,,ua) = p; 80 the
nevly found state g(ua,Lo,k) is exactiy the state which was incorporated
into all of X,.yX,.yee03X . This assertion uses Property A and the
fact that g(u',Lo,k) was included in every set X .,X..y.ce)X
jg i’Ji

where d(po,u') =py - Similarly the states obtained by camputing
£(q,a) for all other q in x can be examined and shown to be of the
form g{u* ,Lo,k-r-l) it q = g(u,Lo,k-r) . Tt is left to the reader
to fill in the remaining details and thus verify that
f(qo,wa) 3 {xu,xj'z, '"’xi,.ji} .

Referring to the previous paragraph, if g(ua, Lo,k) = @ then one
of the two cases will follow:

Case I. g(ua,lb,k+1) £o. If g(ua,Lo,k) =@ and uawfS for
any weE , then g(ua,S,k) will be undefined and the proof will fail
at this point. Thir is why it is necessary to have the term ou included
in the construction of S . If g(ua,Lo,k) =@ and g(ua,Lo,ml) £ o
then o =1 and u- g(u,Lo,k+2) €S . Then ua- g(ua,Lo,k+l) is 8
subse: of S and is not empty. Therefore there will be a w such that

uaw ¢S 80 that g(ua,S,k) will be defined and the proof will go through.

29

RS Uk

B A NS vt oy stnms e

R

Aroomnr

Case II. g(u,lb,kil) =@ . This occurs if p, is an absorbing
state. This is true if and only if g(ua.,Lo,k) is not defined which
happens if and only if f(g(n,Lo,k),a) is empty. So (1) of the Lemma
follows in this case as weil.

Conditions (2) and (3) of the Lemma are clearly true. If p; €D
then Aeg(u,Lo,k) where d(po,u) =p; - Then g(u,Lo,k)eF 80 that
x, NF£Q for all j =1,2,3,...,5, « If p.fD then
i, i i

Aﬁg(u,Lo,b) for any nonnegstive integer b so0 that x, ,NF =9
3

J
for a1l j§ = 1,2,5,...,;}i . This completes the proof of the Theorem.

P et d

o WY SRERR £

SRR SER S I i

PP ONEREY S =)

eyt s

[

BYBLIOGRAFHY

{1] J. A. Brzozowski, "Derivatives of Regular Expressions,” Jousrnal
of the Association for Cowputing Machinery, Vol. 11, No. &,
Pp. WB1-koh, 106%.

[2) J. A. Peldman, "Firci Thoughts on Grammatical Inference," ’
Stanford A. I. Memo No. 55, August 1967.

{3] J. A. Feldman, J. Gips, J. J. Hoxning, S. Reder, "Grammatical
Complexity and Inference,” Technical Report No. CS125, Computer
Science Department, Stanford University, June 1969.

{k] A. Gill, Introduction to the Theory of Finite-State Machines,
McGraw-Hi1l Book Campany, Inc., Kew York 1962.

[5) S. Ginsburg, "Synthesis of Minimal-State Machines,” IRE Transactions
on Electronic Computers, BC8, pp. Lhl-k4g, 1959.

[6) S. Ginsburg, An Introduction to Mathematical Machine Theory,
Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 19¢2. '

[7] S. Ginsburg, The Mathematical Theory of Context-Free Languages, ;
McGraw-Hill Book Company, Inc., New York, 1965. A

i {8] M. A. Harrison, Introduction to Swite and Automata Theory,
McGraw-Hill Book Company, Inc., Rew York, 196S.

[9] D. A. Huffman, "The Synthezis of Sequential Switching Circuits,”
195%; No. &, pp. 275-303, 195i~

[10] G. H. Mealy, "A Method for Synthesizing Sequential Circuits,”
Bell System Technical Journal, Vol. 34, No. 5, pp. 1045-1079, 1955.

{11] G. Ott and N. Feinstein, "Design of Sequential Machines from Their
Regular Expressions,” Journal of the Association for Computing
Machinery, Vol. 8, No. &, pp. 585-600, 1961.

[12] J. Reynolds, "Grammatical Covering," TM-06, Argonne National Iab.,
June 1968.

31

|
|

’ 4

lﬂ:lmu :‘.l-::lﬂﬂnnn i ,
, DOCUMENT CONTROL DATA-R & D

(Bosurity slansiliention ol titie, body of abstrac! and indening snnelstion musi be entared when the everall reper! In clnaniliod)

1. ORIGINATING ACTIVITY (Corpevale suiher) 20, nauwiv ucil;livvdcuh-ncanou
Stanford Artificial Inteiligence Project :1c'aas. e
Computer Science Department sh. snou
Stanford University up
3. REBORY FITL
On The Synthesis of Finite-State Acceptors
4. DESCRIPTIVE NOTES (Type of repert and inelueive dotes)
S KGTHOATET (Firet name, middle Wnlilal, lasi nome)
Alan W. Blermann and Jerome A. Feldman
[6: REPORT DATE 78, TOTAL NG, OF PAGKS 76. N0, OF REPS
April, 12770 31 12
, CONMTRACTYT O HY NO.) o0, ORISINAYONS REPORT NUMBEN(S)
ARPA SD-183 AIM=-114
b, PROJECY NO,
», HER REPORY NOIS) (Any oiher manbere thal mey be sesigned
¢ gL ropert)
P

10, DISTRIBUTION STATRMENT

Statement No. 1 - Distribution of this document 1is unlimited.

11, SUPPLEMENTARY HNOTES 18, BPONBORING MILITARY ACTIVITY
(T8, KGSTYRALY
N\ , »
"Two algorithms are presented for solving following problem: Given a finite-

set S of strings of symbols, find a finite=¥tate machine which will accept the
strings of 3 and possibly some additional strings which "resemble" those of §.
The approach used is to directly construct the states and transitions of the
acceptor machine from the string information, The algorithms include a.
parameter which enable one to increase the exactness of the resulting machine's
behavior as much as desired by increasing the number of states in the machine.

The properties of the algorithms are presented and fllustrated with a number
of examples.

The paper gives a method for identifying a finite-state language from a

randomly chosen finite subset of the language if the subset is large enough

and 1f a bound is known on the number of states required to recognize the ~——.i.
language. Finally, we-discuss some of Lhe uses of the algorithms and their
relationship to the problem of grammaticel inference. s

~~
[N

L ——

DD /=.1473 o

